Vaccines

This brief summarizes the contributions of Kaiser Permanente Research since 2007 on the topic of vaccines. This includes vaccinations delivered in early childhood as well as those delivered to adolescents and adults.

Although the development of vaccinations against communicable diseases dates back to the 18th century, the creation of modern vaccines and their widespread use in the United States began in the 20th century.1 Today, the Advisory Committee on Immunization Practices of the Centers for Disease Control and Prevention provides national recommendations for vaccines, including pertussis (whooping cough) shots for pregnant women and numerous vaccinations delivered to children, adolescents, and adults (see figure below).2 Although vaccination has largely eliminated diseases such as measles and rubella in the United States,1 these and other diseases are still found frequently in countries with lower rates of vaccine coverage,3 and the ease of global travel has led to cases in which unvaccinated people from well-vaccinated nations have contracted these infections.4 Moreover, diseases such as pertussis,1 varicella (chicken pox)5, and human papillomavirus (HPV)6 still occur frequently in the United States.

In addition to the direct effect of immunizing patients against dangerous diseases, vaccination also benefits society more broadly through so-called “herd immunity” effects. Through herd immunity, higher rates of effective vaccination for a given illness at a population level confer protection to unvaccinated individuals by making encounters with infected individuals increasingly rare. For example, increased uptake of the pediatric pneumococcal vaccine has been associated with decreased rates of the disease among adults, many of whom have not, until recently, received this vaccine.7,8 The level of vaccination coverage required to create herd immunity for a given disease depends on both the vaccine’s effectiveness and how easily the disease is transmitted between unvaccinated people.
Vaccination is an active area of study for Kaiser Permanente Research. Scientists across the organization have used our rich, comprehensive, longitudinal data to advance knowledge in the areas of understanding risk, improving patient outcomes, and translating research findings into policy and practice. We have published more than 700 articles related to vaccines since 2007. Together, these articles have been cited approximately 23,500 times. These articles are the product of observational studies, randomized controlled trials, meta-analyses, and other studies led by Kaiser Permanente scientists. Our unique environment, which includes our fully integrated care and coverage model, lets our research scientists, clinicians, medical groups, and health plan leaders collaborate to contribute generalizable knowledge on vaccines, and many other research topics.

Understanding Risk

Who is at risk of acquiring vaccine-preventable communicable diseases?

Any person who has not been vaccinated against a particular disease and encounters a person infected with that disease is at risk of infection. Additionally, no vaccine is 100% effective in preventing disease transmission, so vaccinated people may continue to be at risk. In children, undervaccination (either delaying or not receiving vaccines) appears to be increasingly common. Parental refusal of vaccines has been associated with outbreaks of measles, pertussis, varicella, Haemophilus influenzae type b (Hib), and pneumococcal disease, and our recent studies have linked parental hesitancy with significantly higher rates of pertussis, varicella, and pneumococcal disease. Another study conducted by our scientists found lower rates of vaccination in children diagnosed with autism spectrum disorder, as well as their younger siblings. Our researchers also have found higher rates of infection in children who failed to complete all courses of multcourse vaccines. In some instances, delaying vaccinations can increase the risk of side effects. For example, delayed receipt of measles-mumps-rubella (MMR) or measles-mumps-rubella-varicella (MMRV) vaccine has been associated with a higher risk of febrile seizures. Infants too young to be vaccinated against particular diseases are also at risk of acquiring those diseases; research has found that preterm infants may have lower immune responses to vaccines, while neonatal intensive care unit-treated infants may not receive all appropriate vaccines.

The CDC’s Advisory Committee on Immunization Practices sets national guidelines for recommended vaccines.

Childhood
(BIRTH TO 10 YEARS)
- Pertussis (during pregnancy)
- Diphtheria, tetanus and pertussis
- Hepatitis A, hepatitis B
- Polio
- Pneumococcal disease
- Haemophilus influenzae type B (Hib)
- Measles, mumps, rubella and varicella
- Rotavirus
- Annual flu (beginning at 6 months and older)
- COVID-19 (ages 5 and older)

Adolescence
(11 TO 18 YEARS)
- Human papillomavirus (HPV)
- Meningococcal conjugate
- Tetanus, diphtheria and pertussis
- Annual flu
- COVID-19

Adulthood
(19+ YEARS)
- Annual flu
- Tetanus and diphtheria (with/without pertussis)
- COVID-19
- Hepatitis B (ages 19-59)
- Herpes zoster (at age 50)
- Pneumococcal (at age 65)
Kaiser Permanente scientists have developed and tested programs that address parental concerns about vaccinating their young children.

Beginning during pregnancy and continuing through infancy, physicians should provide information about vaccines, and work actively to build trust with hesitant parents.116-118

A website featuring vaccine information and social capabilities that allows parents to communicate and share information is associated with improved vaccination rates.123-125

In adults, our research has found higher risks of herpes zoster22 and influenza23 among the unvaccinated, and cervical cancer may be more common among women who do not receive HPV vaccination during adolescence.24 Individuals with weakened immune systems also are at higher risk of acquiring vaccine-preventable diseases. For example, reactivation of latent herpes zoster infection is more likely to occur in patients using immunosuppressive drugs.25

How safe are vaccines?

Because vaccines are, by definition, delivered to large numbers of healthy individuals, they are judged by very strict standards of safety, and regulatory approval is only granted to vaccines with extremely low observed risks. Kaiser Permanente researchers have been involved in studying the safety of meningococcal,26-36 pneumococcal,37-40 HPV,41-46 MMR,47 MMRV,48-50 tetanus-diphtheria-pertussis (Tdap),51-54 diphtheria-tetanus-pertussis (DTaP)-polio,55-57 flu,58-72 shingles,73 pertussis,74 hepatitis A,76-77 and hepatitis B78-79 vaccines, among others.80-85 The rarity of problems with vaccine safety makes the prediction of risks challenging, and requires considerable research expertise86,87 and ongoing surveillance.88-90 Allergic reactions such as swelling or soreness at the vaccination site91-95 and complications such as febrile seizures96,97 or fevers98,99 are known side effects of vaccines, though these are rarely associated with long-term health problems.100 Our scientists have led studies linking febrile seizure risks to specific vaccines, including the MMRV101-104 and influenza105 vaccines. Elderly patients have also experienced higher rates of adverse effects from the shingles92 and tetanus-diphtheria-pertussis (Tdap)106 vaccines, although these risks are arguably outweighed by the benefits of these vaccines, such as prevention of neuralgic pain and tetanus or diphtheria infection.

Improving Patient Outcomes

What strategies are effective in increasing vaccination rates?

Despite the importance of routine vaccination, compliance with many recommendations is inconsistent, and research conducted by our scientists has demonstrated racial and socioeconomic disparities in receipt of early childhood,107,108 flu,109 and COVID-19110 vaccines, as well as suboptimal rates of flu vaccination among pregnant women.111 In addition, our research has highlighted the challenges of completing recommended vaccinations during the COVID-19 pandemic, in light of disrupted access to medical care.112-114 Kaiser Permanente researchers have explored a variety of approaches for increasing vaccination rates. In general, the approaches used for early-childhood vaccination are very different from those used for other types of vaccines. Successful interventions for increasing vaccine uptake in young children include physician-oriented approaches to address parental hesitancy,115-122 tailored messages delivered via social and other media,123-129 automated reminders,130 school-based vaccination,131-135 and community-based education (for example, public service announcements).136,137 In contrast, outreach approaches that have been shown to increase adolescent and adult uptake of vaccines include workplace vaccination programs,138,139 reminders placed in the electronic health records of patients or parents,131,140,142 and use of vaccine series requiring fewer doses for completion.79,143,144
How effective is vaccination in preventing the transmission of communicable diseases?

Kaiser Permanente researchers have been actively involved in research on vaccine effectiveness, including herd immunity effects and protection of vulnerable populations, including the elderly, infants, people with suppressed immune systems, and people with certain chronic diseases. Recent work by our scientists has explored the mechanisms by which zoster and pneumococcal vaccination in older adults appears to protect against other infectious illnesses. Other Kaiser Permanente research has identified shortcomings in vaccine effectiveness. Numerous studies of annual flu vaccinations have identified waning effects over time, differences in effectiveness between vaccine types, and variable effectiveness from year to year. More recently, we have repeatedly found evidence of the waning effectiveness of the pertussis and herpes zoster vaccines. This work contributed directly to changes in the ACIP’s recommendations regarding immunization for these conditions. Finally, our scientists are actively involved in randomized trials evaluating the effectiveness of simultaneous administration of multiple vaccines to adolescents and adults.

How does vaccination affect a person’s health?

Vaccine-preventable diseases carry serious and well-known health risks, including cervical cancer from HPV, liver failure from hepatitis, meningitis from Hib, and death from illnesses such as influenza, pertussis, or hepatitis. Vaccination affects health in numerous ways beyond the transmission of communicable diseases. For example, vaccination in pregnant women has been shown to transmit immunity to their children, and annual flu vaccinations appear to have small but statistically significant effects on mortality and hospitalization rates, and on numbers of outpatient visits.

Translating Research Findings Into Policy and Practice

As part of a learning health care organization that uses research to inform and improve practice, our research, clinical, and operational partners have tested a range of interventions to increase uptake of recommended vaccines. Pediatricians in Kaiser Permanente have worked to address parental vaccine hesitancy, leading to the development and evaluation of messaging interventions. This work was subsequently expanded to flu and HPV vaccination. Reminders placed in Kaiser Permanente’s electronic health record system have been used to inform changes in vaccination policies, including a change in herpes zoster vaccines. Our scientists have also explored multicomponent programs for increasing rates of HPV vaccination.

Collectively, research from Kaiser Permanente authors has been cited more than 220 times in recent practice guidelines, including the vaccination guidelines for influenza, HPV, and herpes.
Kaiser Permanente has also shown considerable leadership in the field of vaccine research. Our researchers are leaders in the CDC’s Vaccine Safety Datalink, or VSD, an ongoing effort to use data from large health care organizations to evaluate vaccine safety. In the VSD, which began in 1990, 6 of our regions contribute electronic patient data that are used to study rare but serious adverse reactions, the safety of new vaccines, and changes in vaccine recommendations. Vaccine safety in pregnancy is an emphasis of VSD research, along with the development of new research methods and rapid cycle analysis techniques for promptly notifying the public of possible risks. We are also involved in the U.S. Flu Vaccine Effectiveness Network, which provides interim and annual estimates of the effectiveness of each year’s flu vaccine by studying individuals entering health care facilities during flu season. Our researchers continue to be involved in early-stage vaccine development through the large, long-standing vaccine clinical trials program in the Northern California Vaccine Study Center, and through the National Institutes of Health’s Vaccine and Treatment Evaluation Units (VTEU) network. The VTEU, based in Kaiser Permanente’s Washington Region, is the only such unit in the country housed in an integrated health organization. Our researchers have also participated in a recent workshop on pertussis vaccine waning, organized by the National Institute of Allergy and Infectious Diseases, as well as a Brighton Collaboration effort aimed at standardizing the case definition of multisystem inflammatory syndrome.

Finally, our scientists are part of ongoing research efforts to develop vaccines in response to COVID-19. The VTEU was the lead site for the first-ever trial of a COVID-19 vaccine, evaluating the vaccine developed by Moderna Therapeutics and the National Institute of Allergy and Infectious Diseases. Our researchers have been involved in several late-phase efficacy trials, including trials of the vaccines developed by Pfizer and BioNTech, Moderna and NIAID, and Johnson & Johnson. This work has continued with our participation in clinical trials and evaluations of the real-world effectiveness of these vaccines. Our researchers have also taken part in studies of booster dose effectiveness, as well as studies exploring the waning effects of COVID-19 vaccines over time, and safety concerns such as myocarditis, adverse birth outcomes, hypersensitivity reactions, and other adverse events. Kaiser Permanente scientists have also conducted extensive research on public perceptions and hesitancy regarding COVID-19 vaccination in a variety of populations, including young adults, pregnant women, parents, essential workers, health care workers, members of ethnic minorities, and homeless people.

Kaiser Permanente’s 185 research scientists and 1,530 support staff members are based at 9 research centers. There are currently 2,355 studies underway, including clinical trials. Since 2007 our research scientists and clinicians have published more than 20,000 articles. Kaiser Permanente currently serves approximately 12.5 million members in 8 states and the District of Columbia.

This brief was written by Nicholas P. Emptage, Anna C. Davis, and Elizabeth A. McGlynn. It is available online from about.kp.org/our-story/health-research/research-briefs. The authors wish to thank the following researchers for their contributions to the development of this brief: Nicola P. Klein, Jason M. Glanz, and Lisa A. Jackson.
References

